skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tesdal, Jan‐Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Water Mass Transformation (WMT) theory provides conceptual tools that in principle enable innovative analyses of numerical ocean models; in practice, however, these methods can be challenging to implement and interpret, and therefore remain under‐utilized. Our aim is to demonstrate the feasibility of diagnosing all terms in the water mass budget and to exemplify their usefulness for scientific inquiry and model development by quantitatively relating water mass changes, overturning circulations, boundary fluxes, and interior mixing. We begin with a pedagogical derivation of key results of classical WMT theory. We then describe best practices for diagnosing each of the water mass budget terms from the output of Finite‐Volume Generalized Vertical Coordinate (FV‐GVC) ocean models, including the identification of a non‐negligible remainder term as the spurious numerical mixing due to advection scheme discretization errors. We illustrate key aspects of the methodology through the analysis of a polygonal region of the Greater Baltic Sea in a regional demonstration simulation using the Modular Ocean Model v6 (MOM6). We verify the convergence of our WMT diagnostics by brute‐force, comparing time‐averaged (“offline”) diagnostics on various vertical grids to timestep‐averaged (“online”) diagnostics on the native model grid. Finally, we briefly describe a stack of xarray‐enabled Python packages for evaluating WMT budgets in FV‐GVC models (culminating in the newxwmbpackage), which is intended to be model‐agnostic and available for community use and development. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract Density-driven steric seawater changes are a leading-order contributor to global mean sea level rise. However, intermodel differences in the magnitude and spatial patterns of steric sea level rise exist at regional scales and often emerge during the spinup and preindustrial control integrations of climate models. Steric sea level results from an eddy-permitting climate model, GFDL CM4, are compared with a lower-resolution counterpart, GFDL-ESM4. The results from both models are examined through basin-scale heat budgets and watermass analysis, and we compare the patterns of ocean heat uptake, redistribution, and sea level differ in ocean-only [i.e., Ocean Model Intercomparison Project (OMIP)] and coupled climate configurations. After correcting for model drift, both GFDL CM4 and GFDL-ESM4 simulate nearly equivalent ocean heat content change and global sea level rise during the historical period. However, the GFDL CM4 model exhibits as much as a 40% increase in surface ocean heat uptake in the Southern Ocean and subsequent increases in horizontal export to other ocean basins after bias correction. The results suggest regional differences in the processes governing Southern Ocean heat export, such as the formation of Antarctic Intermediate Water (AAIW), Subpolar Mode Water (SPMW), and gyre transport between the two models, and that sea level changes in these models cannot be fully bias-corrected. Since the process-level differences between the two models are evident in the preindustrial control simulations of both models, these results suggest that the control simulations are important for identifying and correcting sea level–related model biases. 
    more » « less
  3. null (Ed.)
    Abstract Variation in upper ocean heat content is a critical factor in understanding global climate variability. Using temperature anomaly budgets in a two-decade-long physically consistent ocean state estimate (ECCOv4r3, 1992-2015), we describe the balance between atmospheric forcing and ocean transport mechanisms for different depth horizons and at varying temporal and spatial resolutions. Advection dominates in the tropics, while forcing is most relevant at higher latitudes and in parts of the subtropics, but the balance of dominant processes changes when integrating over greater depths and considering longer time scales. While forcing is shown to increase with coarser resolution, overall the heat budget balance between it and advection is remarkably insensitive to spatial scale. A novel perspective on global ocean heat content variability was made possible by combining unsupervised classification with a measure of temporal variability in heat budget terms to identify coherent dynamical regimes with similar underlying mechanisms, which are consistent with prior research. The vast majority of the ocean includes significant contributions by both forcing and advection. However advection-driven regions were identified that coincide with strong currents, such as western boundary currents, the Antarctic Circumpolar Current and the tropics, while forcing-driven regions were defined by shallower wintertime mixed layers and weak velocity fields. This identification of comprehensive dynamical regimes and the sensitivity of the ocean heat budget analysis to exact resolution (for different depth horizons and at varying temporal and spatial resolutions) should provide a useful orientation for future studies of ocean heat content variability in specific ocean regions. 
    more » « less
  4. Abstract This paper is Part II of a two‐part paper that documents the Climate Model version 4X (CM4X) hierarchy of coupled climate models developed at the Geophysical Fluid Dynamics Laboratory. Part I of this paper is presented in Griffies et al. (2025a,https://doi.org/10.1029/2024MS004861). Here we present a suite of case studies that examine ocean and sea ice features that are targeted for further research, which include sea level, eastern boundary upwelling, Arctic and Southern Ocean sea ice, Southern Ocean circulation, and North Atlantic circulation. The case studies are based on experiments that follow the protocol of version 6 from the Coupled Model Intercomparison Project. The analysis reveals a systematic improvement in the simulation fidelity of CM4X relative to its CM4.0 predecessor, as well as an improvement when refining the ocean/sea ice horizontal grid spacing from the of CM4X‐p25 to the of CM4X‐p125. Even so, there remain many outstanding biases, thus pointing to the need for further grid refinements, enhancements to numerical methods, and/or advances in parameterizations, each of which target long‐standing model biases and limitations. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  5. Abstract We present the GFDL‐CM4X (Geophysical Fluid Dynamics Laboratory Climate Model version 4X) coupled climate model hierarchy. The primary application for CM4X is to investigate ocean and sea ice physics as part of a realistic coupled Earth climate model. CM4X utilizes an updated MOM6 (Modular Ocean Model version 6) ocean physics package relative to CM4.0, and there are two members of the hierarchy: one that uses a horizontal grid spacing of (referred to as CM4X‐p25) and the other that uses a grid (CM4X‐p125). CM4X also refines its atmospheric grid from the nominally 100 km (cubed sphere C96) of CM4.0–50 km (C192). Finally, CM4X simplifies the land model to allow for a more focused study of the role of ocean changes to global mean climate. CM4X‐p125 reaches a global ocean area mean heat flux imbalance of within years in a pre‐industrial simulation, and retains that thermally equilibrated state over the subsequent centuries. This 1850 thermal equilibrium is characterized by roughly less ocean heat than present‐day, which corresponds to estimates for anthropogenic ocean heat uptake between 1870 and present‐day. CM4X‐p25 approaches its thermal equilibrium only after more than 1000 years, at which time its ocean has roughlymoreheat than its early 21st century ocean initial state. Furthermore, the root‐mean‐square sea surface temperature bias for historical simulations is roughly 20% smaller in CM4X‐p125 relative to CM4X‐p25 (and CM4.0). We offer themesoscale dominance hypothesisfor why CM4X‐p125 shows such favorable thermal equilibration properties. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026